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Abstract

Emergence is a property often claimed to apply to complex
systems on multiple levels of organization: individual behav-
ior emerges from underlying neural activity and social pat-
terns – from constituent behaviors of the individuals. Fur-
thermore, the emergent level is typically characterized as pos-
sessing autonomy from the lower-level phenomena and as ex-
erting downward causation on them. In this study, we inves-
tigate such a multi-level emergence in the context of a single
simple task. We evolve agents controlled by a small neural
network to travel in formation. We then compute measures of
emergence stemming from an approach known as Integrated
Information Decomposition. Results are presented for both
the final behavior and the evolutionary changes that led to it.

Introduction
Social behaviors are often characterized as emergent collec-
tive phenomena, where individual actions give rise to com-
plex group-level patterns that cannot be predicted solely by
examining the actions of individual members. Examples of
such behavior can be seen in the synchronized movements
of bird flocks, intricate functioning of ant colonies or seem-
ingly sudden appearances of traffic jams. In these systems,
the group behavior is said to be an emergent property with
its own higher-level dynamics, not reducible to and causally
decoupled from the properties and processes of the individ-
ual components. Moreover, it is also considered to affect
individual members in a process called downward causa-
tion. Consider a football match: each player independently
perceives the ball’s location and other players, then selects
and executes actions to help win the game (the middle level
in Figure 1), which together constitute team movements on
the field (top level). However, emergent passing patterns
and collective coordination, along with each player’s role,
ultimately determine the unfolding of the game (top level’s
causal decoupling). This, in turn, affects each player’s per-
ception and action and their neural activity (downward cau-
sation), thereby completing the inter-level cycle of influence.

The study of emergent collective behaviors often involves
attempts to uncover simple local “rules” whose interaction
will produce an observed global pattern. Famously, for ex-

Figure 1: Levels of organization and interactions between
them. Note that interactions are not necessarily causal but
can include other types of relationships (constitution, con-
straint, realization, statistical dependence etc.). The filled
compared to empty circles indicate the relative importance
given to the respective levels in analysis.

ample, Reynolds (1987) showed that the flocking behav-
ior can be explained by assuming that each individual is
following three rules: maintain a safe distance from your
neighbors, move in the same direction as your neighbors,
and move towards the center of the group. Implementing
these rules in a computational agent-based model produces
a realistic-looking flocking behavior. However, the model
does not claim that the real-life individual birds are actually
explicitly following these rules nor does it explain what ex-
act individual cognitive mechanisms underlie behavior that
looks as if it was produced by them (cf., work by Couzin
et al. 2003; Couzin 2009). That is, such a model is missing
an explication of the bottom level of Figure 1.

What we propose in this paper is that a full understanding
of collective behavior requires an investigation into the com-
plex interplay between individual neural activity, individ-



ual behavior, and group dynamics. As can be intuited from
the schematic connections in Figure 1, this investigation can
take two explanatory approaches with respect to the relative
focus on different levels. On the one hand, we could set up
an inquiry that takes lower-level components and processes
as a primary target of analysis, such as looking at how cog-
nitive or neural mechanisms underlie individual behaviors
(N2I) that then constitute collective patterns (I2C)1, consis-
tent with a mechanistic approach to explanation in cognitive
science (Bechtel and Abrahamsen, 2005). For example, un-
derstanding ant foraging might involve the study of their in-
dividual capacities to produce and sense pheromones (Steck,
2012) and navigate to the nest (Wehner et al., 2006), and how
these capacities in multiple ants contribute to collective food
search behavior (Feinerman and Korman, 2017).

In this paper, we focus on the complementary focus of
analysis, one that emphasizes the higher compared to the
lower level. Such an approach consists in looking at whether
and how emergent higher-level patterns acquire a certain de-
gree of autonomy from the lower level and then constrain
individual behaviors (C2I) or their underlying cognitive and
neural activity - directly (C2N) or indirectly through behav-
ior (I2N). In the ant case, for example, selection pressures
on the level of the colony can be analyzed independently
of particular genetic and morphological specialization of the
individuals. However, they can also be seen as contributing
to such changes (Campbell, 1990), including, for instance, a
reduction of brain complexity (Traniello et al., 2022).

The importance of selection forces in collective phenom-
ena highlights the need to explicitly consider the relation-
ship between what is being optimized and how behavioral
performance relates to emergent effects across different lev-
els of organization. In other words, is it the case, for in-
stance, that putting a selection pressure on collective task
performance leads to a greater independence of global pat-
terns (i.e., higher estimated degree of emergence and causal
decoupling) and their stronger constraint over individual ac-
tivity (downward causation)? Furthermore, do any such ef-
fects apply only across “contiguous” levels, e.g., from col-
lective behavior to individual behavior? Or is there a more
direct shaping of individual cognitive and neural activity by
the collective patterns? The aim of this paper is to start an-
swering these questions with an example scenario, which is
easy to artificially evolve and analyze on all the levels of
organization discussed so far and across all the possible in-
teractions between them.

Specifically, we evolve a group of three agents to solve
a well-studied multi-agent formation task. We adopt a very

1Another possibility is that neural activity might have direct ef-
fects on the collective level (N2C), as explored in recent studies of
inter-brain synchrony which correlates with better social coordina-
tion (Czeszumski et al., 2020). However, the precise nature of these
effects, for instance, their causal contribution to this phenomenon,
is still controversial (Holroyd, 2022).

liberal understanding of formation: the agents are required
to move together while staying cohesive within a specified
radius. Each agent can sense the distance to other agents in
their vicinity (within a certain visual field) but has no un-
derstanding of a global coordinate system or every agent
position in it (cf. distance-based formation control in Oh
et al. 2015). Moreover, no specific formation configuration
or common movement heading is imposed. We then analyze
emergence on three scales:

• C2I: the relationship between a formation center of mass
(CoM) position and positions of individual agents2

• I2N: the relationship between individual position of each
agent and its brain activity

• C2N: the relationship between a formation CoM position
and each of the individual agents’ brain activity

In order to quantify emergent effects, we utilize a recently
developed causal emergence framework proposed by Rosas
et al. (2020) and apply ΦID or Integrated Information De-
composition (Mediano et al., 2019, 2022c) to our analysis.
This framework is based on information theory approach
to causality (Granger, 1969; Pearl, 1995), recent advances
in Partial Information Decomposition (Williams and Beer,
2010) and a weak interpretation of Integrated Information
Theory (Oizumi et al., 2014; Mediano et al., 2022b). Specif-
ically, it views emergence as “the capability of some super-
venient [higher level] feature to provide predictive power
that cannot be reduced to underlying [partial] microscale
phenomena” (Mediano et al., 2022c, p.5). That is, whereas
in a strong view on emergence, a macro-level phenomenon
can be said to be impossible to derive from micro-level phe-
nomena even with perfect knowledge of all the micro de-
tails, in a weaker view (1) such derivation is non-trivial and
(2) macro-level patterns capture regularities beyond idiosyn-
cratic micro-level details – both of which to the extent that
a macro-level can be seen as irreducible in an explanatory
sense (Bedau, 1997, 2002). Adopting an information the-
oretic approach to emergence allows one to formulate spe-
cific quantities for causal emergence, downward causation,
and causal decoupling. While one can expect that these
quantities would be applicable to observations generated by
strongly emergent phenomena (should such phenomena ex-
ist), the ΦID approach presents a weak, epistemic stance on
emergence, which is also the stance we adopt in the current
paper (cf. Dewhurst, 2021; Hulswit, 2005; Hoel et al., 2013).

Related work
Previous research Rosas et al. (2020) has shown that ΦID
effectively identifies relevant features of complex systems

2Note again, that these labels are meant to indicate our interest
in emergent properties of the higher level, without implying direct
causal influence from higher to lower levels.



associated with emergent phenomena. For instance, ΦID
applied to a model of flocking behavior, revealed that the
flock’s center of mass is a better predictor of its tempo-
ral changes than individual bird movements. However, this
holds true only when optimal model parameters are cho-
sen to simulate flocking behavior instead of dispersion or
regular trajectories. Similarly, in an experiment involv-
ing macaques’ reaching movements, ΦID highlighted that
the neural activity most predictive of reaching motion is an
emergent property of the underlying neural activity, raising
questions about the brain-behavior relationship.

The novelty of our study with respect to this work is in 1)
analyzing both types of emergence (C2I and I2N) in a single
behavioral context, 2) exploring a third possible inter-level
effect (C2N) and 3) investigating the changes in emergence
over the evolution of target behavior, that is, in relation to
behavioral fitness.

The last point brings us to another body of related work:
examination of changes in integrated information over the
course of evolution of cognitively interesting behavior. For
example, Yaeger (2009) investigated the evolution of agents
in a simple ecosystem and computed their neural complexity
according to an early version of integrated information mea-
sure known as TSE complexity (Tononi et al., 1994). This
measure is said to reflect a balance between functional inte-
gration and separation in a system or what makes it “more
than the sum of its parts” and is proposed to be a correlate
of consciousness but can also be viewed as a measure of dy-
namical complexity (Mediano et al., 2022a). It was shown
that subjecting the agents to natural selection operating at an
individual level led to a rapid increase in neural complexity,
its stabilization at a “good enough” level and its correlation
with behavioral adaptation.

While we use a measure related to TSE complexity and
similarly follow an evolutionary approach, studies such as
this focus on information dynamics within agents’ neural
systems and the emergence relation between neural units
and a neural system as a whole. In this sense, they are con-
fined to the lowest level depicted in Figure 1 while we aim
to capture emergence between this and higher levels.

Research questions
The aim of this study is to investigate whether imposing a
collective-level fitness function on a multi-agent system re-
sults in observable emergent behaviors, downward causa-
tion, and causal decoupling across different levels of anal-
ysis. Specifically, we propose three research questions:

1. How is the collective level of adaptive behavior related to
emergence, downward causation, and causal decoupling
at the three inter-level comparisons C2I, I2N, and C2N?

2. What evolutionary trends are exhibited by emergence,
downward causation, and causal decoupling?

3. Given what is found in analysis (1) and (2), what are the
implications for understanding complex social systems?

These questions will be answered in the context of the
evolution of the formation task as described next.

Methods
Formation task
In the simulation, the three agents (circles of 10 units in ra-
dius) are set in an unbounded 2D environment. They un-
dergo four trials, where in each trial, the initial angle of
the heading directions of the agents is initialized randomly,
whereas their positions are fixed. Specifically, the agents are
placed on a circumference of radius 50 centered on origin at
angles 0◦, 120◦, 240◦ respectively. Each trial is set to last
500 steps. The performance score of the agents for each
trial is computed as the displacement D which is defined as
the sum of the linear displacements away from the starting
point of the agents’ center of mass (CoM) when agents are
in-formation: when they are at most 100 units away from
the center of mass. More formally, this is defined as:

D(t) =



if “moving away”
D(t− 1) + ∆r(t), + “in-formation”

+ “not already covered”3

0, otherwise
(1)

where ∆r(t) is the radial incremental distance of the CoM
between two consecutive time steps. In simple words, agents
are rewarded when they move in-formation as far away as
possible from the initial position. To better clarify this, Fig-
ure 2 shows three different plots of agents’ positions at sub-
sequent stages of the evolutionary process. In these plots, D
is the sum of the lengths of the green segments.4

Agent architecture
The network controlling the behavior of each agent is shown
in Figure 3. Each of the 4 sensors s can perceive other agents
in its 90-degree quadrant, relative to its body axis (based
on its heading direction). At each time step, s receives a

3The idea here is that segments in which the CoM moves away
from the starting point should not be counted twice (or more times)
if the specific radial range of the displacement has already been
“covered” in the previous movement history. This is to discourage
agents from moving back and forth (e.g., making circles).

4Note that in the center frame, the green line (displacement)
goes beyond the end point of the CoM at the agents’ end positions
(indicated as •), because after reaching the further distance away
from the initial position, the agents go backward. Also, there is a
gap in the displacement line, because in that segment, the CoM was
traveling for a small part away from the initial position but not-in-
formation and later on in-formation but backward. Readers may
benefit from viewing the three videos of the agents’ simulation at
https://gitlab.com/kercos/formation

https://gitlab.com/kercos/formation


Figure 2: Traces of agents’ path (in grey) in one example simulation run (run 19, trial 1) along with the trace of their center of
mass (CoM) when agents are in-formation (thick red line) and not-in-formation (thin orange line). The green line represents
the overall traveled displacement of CoM during formation. Bottom panel shows output of the 4 internal neurons of each agent.

signal Is ∈ [0, 1] in input. The signal Is decreases linearly in
proportion to the distance to the closest agent: 1 if the agent
is adjacent (2 body radius away, equivalent to 20 units), and
0 if it is beyond the maximum perceived distance (which is
set to 200 units) or absent. That is, only one agent at a time
can be perceived within each quadrant. The sensor output
OS

s is defined as:

OS
s = Gs σ(Is + θs) (2)

where Gs and θs are the sensory gain and bias, while σ is
the standard activation sigmoid function 1/(1 + e−x).

The sensor’s output is propagated to each neural node ni

in layer N (depicted in blue in Figure 3), which consists of 4
nodes. Each node in this layer is a continuous-time recurrent
neural network (CTRNN) as described by Beer (1995).

All neural nodes are fully connected, both to all other neu-
rons and to themselves. The delta of the neuron state ∆yn
between two consecutive time steps is calculated via the Eu-
ler method integration of the differential equation governing
the state change, as follows:

∆yni
=

∆t

τni

−yni
+Ws,ni

OS
s +

|N |∑
j=1

Wnj ,ni
ON

nj

 (3)

Here, τn is the neural time constant, ∆t is the step size
constant for the integration (set to 0.1), and ON

n is the output
of neuron n ∈ N calculated as:

ON
n = Gn σ(yn + θn) (4)

with Gn and θn being the neural gain and bias.
Next, the output of each motor m ∈ M is calculated as:

mL mR

n1 n2 n3 n4

s4s3s2s1

Figure 3: Architecture of agent’s network in the implemen-
tation. The entire network consists of three layers: the sen-
sory layer (top) with 4 nodes, the neural layer (middle) with
4 nodes, and the motor layer (bottom) with 2 nodes.

OM
m = Gm σ

 |N |∑
n=1

Wn,m ON
n + θm

 (5)

where Gm and θm are the motor gain and bias.
The displacement of the agent ∆x at every step is com-

puted as the difference between the two motors:

∆x = OM
R −OM

L (6)

Finally, the angular variation ∆α is calculated as the ratio
of displacement by the body radius r (10 units):

∆α = ∆x/r (7)

When agents collide, they are not able to move (in terms
of displacement), but they rotate in place according to the
angular variation.



Evolutionary Algorithm
Three distinct5 populations of 48 agents each, are evolved
independently in 20 separate evolution runs (each initialized
with a unique random seed).

In the first generation, all agent genotypes are set to arrays
of zeros and agents are combined into triplets based on their
(still unranked) position in respective populations. They per-
form four task trials and their overall fitness is computed as
the mean of their trial performances. The same fitness score
is assigned to each member of the triplet. In each subsequent
generation, agents are paired for the task based on the same
rank in the three populations. That is, the n-th best agent of
the first population is grouped with the n-th best agent of the
second and third population. This means that the triplet of
agents is kept together across all generations, even though
they may undergo independent mutations, change their be-
havior in the simulation and change their resulting rank in
the population across generations.

All network parameters (weights, gains, biases, taus)6 are
evolved for 5, 000 generations, using a real-valued genetic
algorithm in the fixed range [−1, 1]. At each generation, the
network parameters encoded in each agent’s evolved geno-
type are converted to the correct ranges via linear interpola-
tion.7

New generations are created by keeping an elite popula-
tion of the top 5% of the existing solutions and by mutating
(with a 5% variance) and crossing over the remaining 95%
of the individuals to get the rest of the new solutions. Muta-
tion consists in adding zero-mean Gaussian mutation noise
with a variance of 0.05 to the solutions and crossover con-
sists in swapping each parameter between a pair of solutions
with a probability of 0.1.

Measures of causal emergence, downward
causation, and causal decoupling
In this research, we employ the causal emergence framework
by Rosas et al. (2020) to quantify emergence. This frame-
work characterizes emergent behavior as macro-level infor-
mation synergy, detailing quantitative measures for causal
emergence, downward causation, and causal decoupling. To
ensure computational feasibility, we use Rosas et al. (2020)
“practical criteria”, providing sufficient conditions for the
aforementioned concepts and allowing application to large
systems without extensive calculations. This is crucial as
the computational intensity of partial information decompo-
sition, a fundamental method in this framework, increases
super-exponentially with system size, rendering traditional
computation impractical.

5We opted for not pairing clones from the same population to
create more variability in emerging interaction patterns.

6With the exception of neural gain which is set to 1.
7Parameter values ranges are the following: gains ∈ [1, 20], bi-

ases ∈ [−3, 3], weights ∈ [−8, 8].

Causal emergence To compute the practical measure of
causal emergence, Rosas et al. (2020) define the quantity
Ψ

(1)
t,t′(V ) as:

Ψ
(1)
t,t′(V ) := I(Vt;Vt′)−

∑
j

I(Xj
t ;Vt′) (8)

Here, j is the index of the micro variables X . The first
part on the right-hand side is the mutual information be-
tween two time steps t and t′ of a macro feature V , and the
second part is the sum of the mutual information between
each micro variable Xj at time t and the macro feature V
at next time step t′. The value of Ψ greater than 0 is suffi-
cient to indicate that there is synergistic information present
in macro dynamics that cannot be explained by any individ-
ual micro variable, suggesting causal emergence. It is worth
noting that the superscript (1) in Ψ

(1)
t,t′(V ) indicates that we

consider only individual variables and not variable sets of
size greater than one.

Downward causation Rosas et al. (2020) define the sec-
ond quantity ∆

(1)
t,t′(V ) as:

∆
(1)
t,t′(V ) := maxj(I(Vt;X

j
t′)−

∑
i

I(Xi
t ;X

j
t′)) (9)

Downward causation can be sufficiently claimed when
∆(1)t, t′(V ) > 0. If a macro variable Vt, holds more infor-
mation about the future state of at least one micro variable
Xj

t′ , than the sum of the information held by current states
of all individual micro variables Xi

t , then the system can be
said to exhibit downward causation. This is because the in-
formation content of the macro variable regarding the future
state of the individual micro variable exceeds the combined
information of the present states of all micro variables.

Causal decoupling For causal decoupling Rosas et al.
(2020) define the third quantity Γ

(1)
t,t′(V ) as:

Γ
(1)
t,t′(V ) := maxjI(Vt;X

j
t′) (10)

Where Ψ
(1)
t,t′(V ) > 0 and Γ

(1)
t,t′(V ) = 0 are the sufficient

criteria for causal decoupling. This criterion indicates that
when causal emergence is present ( Ψ(1)

t,t′(V ) > 0) and the
macro variable has no predictive power on the future state of
every individual micro variable (Γ(1)

t,t′(V ) = 0), the macro
process can be considered “decoupled” from its micro pro-
cesses.

Data analysis
For every measure listed above, we computed three quan-
tities corresponding to our target inter-level comparisons.
That is, we computed ΨC2I , ΨC2N , ΨI2N for causal emer-
gence and analogous quantities for ∆ and Γ. The macro and
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micro variables were entered into computation8 as presented
in Table 1.

Comparison V X
C2I d(CoM) d(Agents)
C2N d(CoM) Agents brain output
I2N d(Agents) Agents brain output

Table 1: Variables used for emergence calculation. d(.) rep-
resents Euclidean distance from the origin (start point), so
that d(Agents) is a triplet of distances. CoM stands for cen-
ter of mass.

In the context of our study, we selected d(CoM) as a mea-
sure of collective behavior because it directly reflects the
collective performance. We chose to focus on d(Agents) as
a simplified and computationally tractable representation of
individual behavior of agents. This choice was made due
to the direct relationship between d(Agents) and the collec-
tive performance measure d(CoM). It is important to em-
phasize that d(CoM) is a function of d(Agents), and there-
fore d(Agents) can be viewed as an individual agent’s con-
tribution towards the collective goal. In this framework, the
output of the neurons plays a crucial role. The displace-
ment of the agent at every step, which is a key component
of d(Agents), is computed as the difference between the two
motors. These motors are directly influenced by the output
of the neurons. Thus, the output of the neurons collectively
influences the agent’s behavior, and by extension, the col-
lective behavior represented by d(CoM). This highlights the
importance of the ‘Agents brain output’ at the neuron level in
our study, as it provides a bridge between individual neural
activity and collective performance.

Note that there are infinite ways to define relevant micro
and macro variables. For instance, regarding the states of the
individual agents, we could consider a wide array of param-
eters including full pose, velocity, acceleration, and many
more. However, the decision to use d(Agents) as the repre-
sentative measure of agent states in this study was motivated
by the balance between the complexity of the model and its
interpretability.

Each quantity was computed separately for every trial, us-
ing the time series of a complete trial run (500 time steps).
Next, the values were averaged across trials and across
agents to obtain a single value per evolution run and per gen-
eration.

In order to calculate information-theoretical measures, we
utilized the code provided by Rosas et al. (2020). This code

8Note that in the current analysis macro-variables V are
one-dimensional time series while micro-variables X are multi-
dimensional. This means that when d(Agents) is entered into com-
putation as a V, each agent’s d is paired with activity of its own 4
neurons. However, when d(Agents) is entered as X, the triplet of
values is paired jointly with a single d(CoM).

was adapted to our specific needs. Note that the implementa-
tion of mutual information calculation in this code assumes
that the variables being analyzed are Gaussian. This as-
sumption was made in order to simplify the computation of
mutual information. While this assumption may not always
hold in real-world scenarios, it allowed us to obtain accurate
and efficient results for our specific analysis.

Results
Emergence in evolved solutions
First we analyzed the three ΦID measures in the best per-
forming group of agents of the final generation of all the
evolution runs (Figure 4a-4c). We found positive values
for ΨC2N and ΨI2N , suggesting that behavior of the group
(CoM displacement) and behavior of the individual agents
(agent displacement) is an emergent property of the agents’
individual neural activity. We also found that for these mea-
sures, Γ is close to 0, which together with positive Ψ sug-
gests the existence of causal decoupling of the higher-level.
At the same time, surprisingly, we found no evidence for
either emergence or decoupling of the collective level from
the individual behavior, as indicated by negative ΨC2I and
positive ΓC2I . This result is interesting in that it shows that
emergence of the social collective level from the individual
neural activity can be detected independently of its emer-
gence from individual behavior.

Having seen that ΨC2N and ΨI2N values are very similar
we wondered whether there is nonetheless a difference be-
tween them in the final generation. The paired t-test showed
that ΨI2N was smaller than ΨC2N and the difference was
large and statistically significant (t(19) = −5.72, p < .001;
Cohen’s d = −1.28, see also Figure 4d). This result is con-
sistent with an intuition that the higher one goes in the hi-
erarchy of the system’s organization, the more emergence
from the underlying neural level can be found.

Finally, we saw no evidence of downward causation at
any of the levels considered, as indicated by negative ∆ val-
ues. This confirms that the measures distinguished by the
ΦID framework are independent components of the overall
concept of emergence.

Considering behavioral fitness, we found that all three va-
rieties of Ψ are highly (and significantly, all p < .001) cor-
related with performance: negatively for C2I (r = −.8) and
positively for C2N (r = .82) and I2N (r = .87), Figure 5.
This indicates that better collective performance is related
to higher emergence of the social and behavioral level from
the neural implementation but lower emergence of the social
level from the individual behavior. We elaborate on possible
reasons for this below.

We also found a high negative correlation of performance
with ∆C2I (r = −.8) and a high positive correlation with
ΓC2I (r = .79). However, given that we found no down-
ward causation or decoupling for C2I, these correlations are
difficult to interpret.



(a) (b) (c) (d)

Figure 4: Values of ΦID measures in the best performing agents across all the evolution runs. (a-c) Distribution of ΦID values
in final generation of all evolution runs. (d) Comparison of Ψ values in the final generation.

Figure 5: Correlation between Ψ and performance.

Evolution of emergence
Next, we looked at the changes in ΦID measures over evo-
lution. Figure 6a shows improvement in behavioral perfor-
mance (distance traveled) over 5000 generations in all the 20
evolution runs. The evolution of Ψ values is consistent with
the correlations we found in the last generation. That is,
as performance increases over time, ΨC2N and ΨI2N also
increase while ΨC2I decreases (Figure 6b). Interestingly,
however, collective and behavioral level shows emergence
from the neural level immediately from the start, suggesting
that this type of emergence is inherent to these inter-level
relationships regardless of behavioral adaptation – at least
with respect to specific choices of the neural architecture and
macro variables of interest.

On the other hand, the ΨC2I for some of the evolution
runs starts out as positive but quickly becomes negative as
performance increases (example evolution runs in Figure 7).
To get further intuition about the relationship between this
measure and type of behavior, we can again look at Figure
2, which shows the evolution of run 19. In generation 100,
the agents exhibit complex trajectories but stay in formation
for only about half of the trial and travel a relatively short
distance together. However, their ΨC2I is positive and high
(3.3 in the trial depicted). By generation 500, they are able to

optimize their trajectories and travel more efficiently while
staying in formation. They still exhibit relatively complex
behavior and their ΨC2I is still small although nearing 0
(0.22). Finally, at the end of the evolution run, particular
trajectories are almost linear and very similar to the CoM
trajectory. This allows the agents to travel very far while in
formation but the ΨC2I is low (−7.3).

These results are consistent with what has been reported
by Rosas et al. (2020) in their flocking simulation. Also
there the ΨC2I was negative for the behavior in which indi-
vidual boids were moving in an ordered pattern. This was
explained as self-predictability of the CoM being high but
accompanied by low mutual information of individuals, in-
dicating high redundancy in the system.

There are no notable evolutionary patterns for the other
measures: ∆ and Γ.

Discussion
We have analyzed three types of emergence in the context
of an evolution of a collective task: collective from individ-
ual behavior (C2I), collective from individual neural activity
(C2N) and individual behavior from individual neural activ-
ity (I2N). We used a simple formation task, and the agents
we evolved to solve it, had minimally complex brain and
body anatomy. This allowed us to easily compute measures
of emergence proposed by the ΦID framework: causal emer-
gence, causal decoupling and downward causation.

We found evidence for causal emergence and causal de-
coupling for the relation between behavioral level and neu-
ral activity (both C2N and I2N), which were present from
the beginning of the evolution and increased as behavior be-
came optimized for collective performance. This indicates
that using neural processes to explain individual and collec-
tive behaviors may not be always suitable and it is true even
for a toy, small-scale model in which all the relevant vari-
ables can be directly observed and measured.

Regarding the relationship between C2N and I2N, we
found that collective level is relatively more emergent than



(a) (b)

Figure 6: Changes in performance and ΦID measures over generations. Points represent mean values and error bars standard
error of the mean.

Figure 7: The changes of ΨC2I in early generations.

individual level from the underlying neural activity. How-
ever, we observed no evolutionary changes in this relation-
ship and the values were similar and correlated with perfor-
mance to a similar degree. It is an open question whether in
other task settings the two values could diverge more. That
is, in our example neural activity was related to CoM and in-
dividual displacements as macro variables and both are rel-
atively similar. It would be interesting to see whether differ-
ent results could be obtained when collective and individual
variables pick out different patterns: for instance, collective
variable capturing the type of coordination between agents
and behavioral variables tracking their particular movements
(i.e., the way coordination is realized).

Our negative results for the emergence at C2I which ac-
companies clear behavioral success in the simulated task im-
ply that there exists strong information redundancy across
our agents. In our task, to achieve higher performance for
the collective goal, agents need to synchronize their actions
and move in the same direction. The synchronization leads
to agents sharing the same information, which in turn pro-
duces a negative result. The broader implication of this is
that success in a collective task can be achieved in a vari-
ety of ways, which do not always require emergence under-
stood as information synergy (according to the framework

we adopt).
Similarly, a lack of evidence for downward causation

across different comparisons imply that this process is
not necessary for individuals to optimize collective perfor-
mance. This goes contrary to some intuitions in the com-
plexity science community, in which downward causation
is seen as the key to the irreducibility of higher levels. For
instance, in the enactive approach to social cognition, inter-
action is said to have an autonomy of its own (emergence
and causal decoupling) and also constrain or enslave indi-
vidual processes (De Jaegher and Di Paolo, 2007; Di Paolo
and De Jaegher, 2012). Again, it might be that this particular
task is not appropriate for demonstrating this phenomenon.
Future work could both explore other tasks or, alternatively,
try to explicitly maximize the ∆ measure over evolution and
observe what type of behaviors and neural activity emerge
as a result.

In summary, our simulation shows that reductionist ap-
proaches with partial access to information of the micro-
level processes, may never lend us a full understanding of
collective behavior.
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